$$N_2(g) + 3H_2(g)$$
 $2NH_3(g)$, $\Delta H < 0$ at (P, T_1) is given below -

Q. The % yield of ammonia as a function of time in the reaction

[JEE 2015]

reaction is conducted at (P, T_2) , with $T_2 > T_1$, the % yield of ammonia as a function of time is represented by –

Sol. (B) At t = 0 \Rightarrow $r_{net} = k_f [N_2][H_2]^3 = r_f$. % yield will increase in initial stages due to increase in net speedAs time proceeds \Rightarrow $r_{net} = k_f [N_2][H_2]^3 - k_b [NH_3]^2$ On increasing temp., $k_f \& k_b$ increasebut increase of k_b is moreso % yield will decrease% yield will increase in initial stage due to enhance speed but as time proceeds, final yield is governed by thermodynamics due to which yield decrease since reaction is exothermic